Scheduling Reach Mahjong Tournaments using Pseudoboolean Constraints

Martin Lester

University of Reading

SAT, 8th July 2021

Reach Mahjong

- Mahjong: A gambling game for 4 players.
 - Each player competes individually.
- **Reach** mahjong: variant most popular in Japan.
- Also played in amateur tournaments across Europe.

Tournament Scheduling

- How to construct a tournament schedule satisfying various constraints?
 - Use **Pseudoboolean** encoding.
 - Monolithic encoding, followed by tuning phase.
- Tool CoMaToSe available.
 - Used successfully for UK tournaments.

Table	1				2							3				4				5	6			
Session	E	S	W	N	Е	S	W	Ν	Е	S	W	N	Е	s	w	N	Е	s	W	N	Е	S	W	N
1	1	3	2	4	7	8	5	6	11	12	10	9	14	13	15	16	17	20	18	19	24	22	23	21
2	9	23	7	17	3	19	10	15	16	6	24	2	8	18	21	12	22	5	1	14	20	11	4	13
3	11	18	14	24	21	1	13	17	20	7	3	22	10	4	6	23	2	15	9	8	12	16	19	5
4	15	21	6	20	4	22	16	9	19	23	8	14	2	17	11	5	3	24	12	13	18	10	1	7
5	13	8	22	10	23	2	20	12	5	15	4	18	19	9	24	1	7	16	21	11	6	14	17	3

Primary constraint: Socialisation

- Tournament is a **partial round robin**.
 - Common sizes: 4-9 sessions, 16-68 players.
 - European championship 2016: 10 sessions, 128 players.
- Every player plays in every round, facing opponents at most once.
 - Well-known Social Golfer Problem.

Table	1				2				3							4				5	6			
Session	Е	S	W	N	Е	S	W	Ν	Е	S	W	Ν	Е	s	W	Ν	Е	S	W	Ν	Е	s	W	N
1	1	3	2	4	7	8	5	6	11	12	10	9	14	13	15	16	17	20	18	19	24	22	23	21
2	9	23	7	17	3	19	10	15	16	6	24	2	8	18	21	12	22	5	1	14	20	11	4	13
3	11	18	14	24	21	1	13	17	20	7	3	22	10	4	6	23	2	15	9	8	12	16	19	5
4	15	21	6	20	4	22	16	9	19	23	8	14	2	17	11	5	3	24	12	13	18	10	1	7
5	13	8	22	10	23	2	20	12	5	15	4	18	19	9	24	1	7	16	21	11	6	14	17	3

Existing SGP solution methods

- Heuristic-guided **local search**:
 - Best automated method for hard SGP instances.
 - Hard to add other constraints.
- **SAT** encodings:
 - Best SAT encodings don't scale to large numbers of players.
- Pseudoboolean encoding:
 - Original encoding of SGP!
 - Scales well and easy to add other constraints.

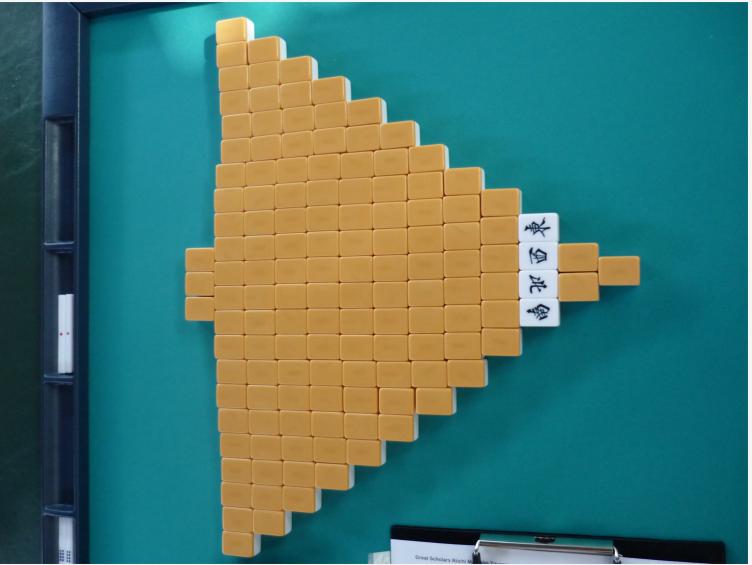
Secondary constraint: Seat allocation

- Each player has a **seat** at the table.
 - Seats named after winds: East, South, West, North.
 - Allocating seats in tournament schedule saves time.
- Seat position can have big impact:
 - Being dealer gives a bonus.
 - Dealer position rotates during game.
 - Tournament games played to time limit.
 - If you start as West or North, less likely to get a second turn as dealer.
- Players want equal number of allocations of each seat in tournament schedule.
 - Easy to add constraints in PB formulation.

Tuning seat allocation

- Solver for monolithic encoding doesn't always find perfect balance of seat positions.
- In this case, **tune using separate encoding** that only adjusts seat allocation.
- Perfect balance usually possible with tuning.

Table	1				2							3				4				5	6			
Session	Е	S	W	N	E	S	W	N	Е	S	W	N	E	S	W	N	E	S	W	N	E	s	W	N
1	1	3	2	4	7	8	5	6	11	12	10	9	14	13	15	16	17	20	18	19	24	22	23	21
2	9	23	7	17	3	19	10	15	16	6	24	2	8	18	21	12	22	5	1	14	20	11	4	13
3	11	18	14	24	21	1	13	17	20	7	3	22	10	4	6	23	2	15	9	8	12	16	19	5
4	15	21	6	20	4	22	16	9	19	23	8	14	2	17	11	5	3	24	12	13	18	10	1	7
5	13	8	22	10	23	2	20	12	5	15	4	18	19	9	24	1	7	16	21	11	6	14	17	3


Secondary constraint: Tournament graph

- Consider tournament as a mechanism for transfer of points between players.
- For players who don't play each other in the tournament:
 - Maximise opportunities for indirect points transfer.
 - So add constraints:
 - at least *d* paths of length 2 between them.
- Mainly a concern for larger tournaments.

Conclusion

- **Pseudoboolean** constraints are a convenient and effective way of encoding problems.
- For our encoding, **clasp** worked well as a PB solver.
- Monolithic encoding didn't always find optimal solution.
 - A separate **tuning** phase often improved upon this.
- Local search still far better for **pure SGP**.

Thanks for listening

